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Expressions for the longitudinal conductivity of metals in a magnetic field are obtained using
a set of wave functions consistent with the effective~-mass energies and following a method es-
sentially the same as that employed by Dresselhaus and Dresselhaus. It is found that the re-
sulting expressions do not conform to the physical results.

A calculation of the longitudinal conductivity of
metals in a magnetic field is presented by Dressel-
haus and Dresselhaus! (hereafter referred to as
DD), building on an earlier work by Mattis and
Dresselhaus.? The approach of DD to the problem
is based on a density-matrix technique originally
developed by Karplus and Schwinger.® It is impor-
tant to note that DD did not use a consistent set of
energies and wave functions. The energies used
were the well-known effective-mass energies,
while the wave functions were the lowest-order
wave functions of Luttinger and Kohn (LK).* These
are known not to be compatible (see, e.g., Smith
et al.®). In an attempt to compensate for this and
to obtain physically sensible results, DD replaced
in an ad hoc way the electron mass m by the effective
mass for the band m: wherever certain matrix ele-
ments of momentum were encountered. In this
paper, a set of wave functions consistent with the
effective-mass energies is used to treat the same
problem. A variational-perturbative technique is
employed to find perturbed eigenfunctions and en-
ergy levels for the case of Bloch electrons in an

external magnetic field, using LK functions as zero-

order wave functions. The physical system to
which the present calculations are applied is the
same as that considered by DD (the same notation
as that used by DD will be used throughout this
paper unless otherwise indicated).

We take the state vectors |nlq) for the static

1

problem, i.e., when the rf field is switched off, to
satisfy to first order
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are the energy eigenvalues in the effective-mass
approximation (they are consistent with the f-sum
rule), and the |#lq), constituting a complete or-
thonormal set to first order, are given in terms of
the |n1q) (the LK zero-order state vectors) by
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The symbol § refers to the summation over dis-
crete indices and integration over continuous ones.
The prime over the S indicates that the term with
n', ', ¢ =n, 1, § is omitted in the summation.

The main concern is the calculation of the Fourier
transform of the mean value of the current density
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where |1) stands for In,,!,,q,), etc. In order to
evaluate explicitly the expression for (j(%)) one
needs the various matrix elements appearing in it.
Explicit expressions for these are given by DD.
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There are, however, some corrections needed.

The matrix elements (1| p |2) are formally the same
as Eq. (28) of DD, with |) replaced by |). The
corrected matrix elements of p, are

1] p,]2)=(2m)? 51112 6(d; - qz) (21220 | px | 221232)
and

(] p, )=
The f-sum rule [Eq. (37) of DD] should be given as
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Also used in the calculation of the intraband term
are the diagonal matrix elements of p, with respect
to |); they are given by
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In the calculation many terms appear which would
contribute to the interband terms were they not to
vanish according to the symmetry requirements.

In particular, it is assumed that Bloch wave func-
tions at the bottom of the band are nondegenerate
apart from time-reversal degeneracy, and that the
periodic potential V,(F) is invariant under inversion.
Then terms such as (e3l,q | p, 11,1,q) (0, 2,q1p,!
Xn51,q) (n,1,q13€yIn51,q) vanish due to the Bloch
wave functions possessing a definite parity.

The results are expressed in terms of a longitu—
dinal conductivity o,(k,), which is related to (j(%))
as follows (since E depends only on the z coordi-
nate):

(F (), =m0(k,) 8(k,) E(K,) et 0,,(K,).

The o,, may be separated into inter- and intraband
terms:
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where
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It is easily seen from the expression for ¢!2tr®
that Ohm’s law and the zero-field result of the
Drude model for V,# 0 are not recovered. This
arises from the fact that in writing the expression
for §}(g) it is assumed that an effective mass is
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produced due to the coupling of the nth band to other
bands, whereas if such a coupling exists, then the
magnetic energy levels should be complicated ex-
pressions depending on coupling between all Landau
levels in the nth band to all other Landau levels.
This difficulty can be overcome by using magneto-
translationally invariant wave functions. &
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